skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCreesh, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning is a key function in the brain to be able to achieve the activity patterns required to perform various activities. While specific behaviors are determined by activity in localized regions, the interconnections throughout the entire brain play a key role in enabling its ability to exhibit desired activity. To mimic this setup, this paper examines the use of reservoir computing to control a linear-threshold network brain model to a desired trajectory. We first formally design open- and closed-loop controllers that achieve reference tracking under suitable conditions on the synaptic connectivity. Given the impracticality of evaluating closed-form control signals, particularly with growing network complexity, we provide a framework where a reservoir of a larger size than the network is trained to drive the activity to the desired pattern. We illustrate the versatility of this setup in two applications: selective recruitment and inhibition of neuronal populations for goal-driven selective attention, and network intervention for the prevention of epileptic seizures. 
    more » « less